
Guidelines for Accessible Textual UML
Modeling Notations

Vanessa Petrausch1, Stephan Seifermann2 and Karin Müller1

1 Karlsruhe Institute of Technology, Germany
{vanessa.petrausch, karin.e.mueller}@kit.edu

2 FZI Research Center for Information Technology, Germany
seifermann@fzi.de

Abstract. Textual representations of UML are basic requisites to make
UML modeling accessible for visually impaired people. The accessibility,
however, varies depending on the concrete realization. Constructing and
rating accessible notations is challenging because the notation has to
consider requirements of various assistive techniques including screen
readers with audio and/or braille output. Neither accessibility metrics for
existing textual notations nor comprehensive guidelines for constructing
such notations exist. To bridge this gap, we design an interview for rating
the accessibility of notations for UML class diagrams and conduct it
with six participants for four textual notations. We use the results and
related work to derive general design guidelines for accessible textual
UML notations. The guidelines allow constructing accessible notations
without deep understanding of assistive technologies and can serve as a
benchmark for existing notations.

Keywords: UML, Textual Notation, Survey, Accessibility, Formal Mod-
eling, Language Design, Guidelines

1 Introduction

Modeling is frequently used in the software engineering process to describe var-
ious aspects of a system in an abstract way. The Unified Modeling Language
(UML) is the most commonly used modeling language. It provides a complete
graphical notation but only patchy textual notations for parts of diagram types.
The lack of a standardized accessible notation impedes equal participation of
visually impaired software developers and engineers even if the demand for IT
experts is high.

Textual notations are considered accessible in general but their concrete real-
ization influences accessibility. For instance, a verbose notation hinders the usage
of braille displays since reading the notation is onerous and reduces the working
efficiency. Furthermore, most existing notations do not focus on accessibility and
thus do not consider the needs of assistive technologies.

Accessibility ratings for existing textual notations do not exist. Creating such
a rating is, however, challenging because of missing rating criteria or notation
design guidelines for deriving such criteria.

This is a preliminary version of the paper that will appear in the 
proceedings of ICCHP'16 published by Springer.



2 Guidelines for Accessible Textual UML Modeling Notations

The contribution of this paper is a comprehensive set of design guidelines for
constructing accessible textual UML notations. Notation designers do not need
to have extensive accessibility experience to use them. The guidelines also serve
as a benchmark for existing notations. We derived the guidelines from related
work and an accessibility survey for existing textual UML notations. We drafted
an interview sheet for UML class diagram notations that can be reused for further
accessibility assessments. Two blind computer scientists, two researchers in the
field of assistive technology and two researchers in the field of computer science
participated in interviews using those interview sheets.

As a result, we derived five guideline categories covering usability, accessibil-
ity and technical aspects. The guidelines contain 18 concrete recommendations
for textual UML notations which are not only applicable for class diagrams but
for other UML diagram types as well.

The remainder of the paper is structured as follows: section 2 shows re-
lated work. We describe our research methodology for the accessibility survey
in section 3 and present the results in section 4. Section 5 describes the design
guidelines derived from related work and the survey results. We conclude and
outline future work in section 6.

2 Related Work

Textual notations are beneficial from an accessibility and a general usability
point of view. Loitsch and Weber [4] state that textual notations exploit existing
assistive techniques such as screen readers although they focus on tactile displays
to make UML diagrams accessible. Various approaches for transforming UML
models into haptic representations such as 3D printing [1] exist but lack editing
support. Grönniger et al. [2] present advantages of textual notations for general
usability including fast editing, layouting and conciseness.

Many surveys on textual notations for UML modeling exist. Luque et al.
[5] surveyed 27 and Müller [7] three approaches that exploit textual notations
for making UML diagrams accessible. Seifermann and Groenda [11] surveyed 31
notations with focus on UML coverage, editing experience and applicability in
engineering teams. No survey focused on rating the accessibility of notations.

Additionally, research on guidelines for textual notations exists. Patil et al.
[9] define design guidelines for making textual information accessible. When
designing UML notations, the suggestions of naturally expressing concepts and
supporting the user’s environment are applicable. The other guidelines given
by Patil focus on tool support rather than the notation. The W3C formulated
general accessibility principles for websites [12] that partially apply to textual
UML notations. Karsai et al. [3] derive general design guidelines for improving
the usability of languages and cover language purpose, realization, content as well
as the concrete and abstract syntax. We cannot apply the guidelines for language
content and abstract syntax because the UML [8] already defines them. Mazanec
and Macek [6] also define general usability guidelines for textual notations.



Guidelines for Accessible Textual UML Modeling Notations 3

3 Methodology for Deriving Accessible Notation
Concepts

The overall objective is the definition of design guidelines that allow creating
accessible textual UML notations. We mine the available general guidelines for
textual notations from the related work section and complement them with rules
we derive from expert interviews on accessible realization concepts of textual no-
tations. The following paragraphs describe the selection of representative textual
notations and their elements, the interview sheet and the interview conduction.

The interview shall cover commonly used realization concepts of textual no-
tations. For our initial interview sheet, we restrict the interview to elements
usually found in class diagrams to not overcharge our participants. We base the
selection of representative notations on our previous survey on textual UML no-
tations [11]. We categorize the notations in two dimensions: Modeling Focus and
Modeling Objectives. Notations in the same category express aspects in a similar
way. Figure 1 gives an overview on the categories and the selected notations.

Modeling

Sketching

Conceptual

HUTN

Modeling Objective

M
od

el
in

g 
Fo

cu
s

Earl Grey
TextUML

Clafer
tUML
USE

Alf
txtUML
UML/P
Umple

AWMo
Modsl

Nomnoml

TCDUMLGraph

MetaUML
Pgf-umlcd

UMLet
yUML

PlantUML

Input for 
further 

Processing
AnalysisProgramming

Graphics 
Generation

Fig. 1. Categorization of the analyzed textual notations

The Modeling Focus covers the modeled element’s type. Sketching focuses on
graphic-oriented elements. Notations fall into this category if users have to de-
scribe graphical shapes rather than concepts. Modeling produces layout agnostic
elements. The Modeling Objective covers the motivation for modeling. The clas-
sification into the categories Graphics Generation, Programming and Analysis
relies on the intended usage stated by the notation vendors. We also define the
objective of a notation to be Programming if the language is based on a pro-
gramming language. If tools generate formal UML models without defining later
usage, the objective is Providing Input for Further Processing.



4 Guidelines for Accessible Textual UML Modeling Notations

We selected at most one textual notation from each combination of Model-
ing Focus and Modeling Objectives because notations in such a group express
UML concepts in a similar way. We do not consider Analysis notations because
these are usually tailored for a specific need and therefore often not applica-
ble for general purpose modeling. We considered yUML from sketching because
it has a concise, pure graphical notation and thus is an interesting candidate
for comparison. We omit other sketching notations because TCD is basically
text-based visual art (also called ASCII art) and therefore are not accessible by
definition. The syntax of UMLGraph is too close to corresponding notations in
the Modeling category to gain more insights. For the Programming objective,
we select Umple over the other candidates because it is well established, cov-
ers many language constructs, has a comprehensible documentation, is not fully
based on a programming language and is concise. For the Input for further Pro-
cessing objective, we select Earl Grey over TextUML because the former focuses
on usability, which often implies accessibility.

In order to compare the notations, we draft an interview sheet that distin-
guishes between available elements, realization aspects and realization concepts.
Available elements are the UML elements that can be modeled. A realization
aspect groups realization concepts for a certain purpose such as the location
of an element or the order of its parts. Realization concepts are concrete ways
of representing realization aspects. An excerpt of the interview sheet is given in
Table 1 expressing the element Relation and four concepts of realizing the aspect
Display : It can be located within a class, within a separate section, repeatedly
within all involved classes or represented as an attribute. We added examples
for each notation to allow easier rating of the realization concept. The complete
interview sheet is available on our project’s website3.

Table 1. Excerpt of the interview sheet used for rating the accessibility of textual
UML class diagram notations. The example shows how a relation could be displayed.
The users rated three times for PlantUML and three times for the realization as a
separate section.

Realization Example Notation Example

Within a class class ClassA { − > ClassB } Umple:
class A{ ∗− > ∗ B; }

Separate section relation { from Element A; to Element
B; }

PlantUML:
class A − > class B

Within all involved
classes

class ClassA { − > ClassB }
class ClassB { − > ClassA }

Like Attribute class ClassA { ClassB reference; }

We conduct expert interviews with two blind computer scientists, two re-
searchers in the field of assistive technologies and two computer science re-
searchers. The three authors are part of the two latter groups. This procedure

3 http://www.cooperate-project.de/icchp2016

http://www.cooperate-project.de/icchp2016


Guidelines for Accessible Textual UML Modeling Notations 5

ensures that our notation fits the needs of people with and without visual im-
pairment and supports formal modeling as well. Participants are asked to rate
the concept or concrete notation example they prefer to realize the given aspect.

4 Results of Our Accessibility Survey

The experts rated 29 aspects for 21 class diagram elements. Because of size
limitations, we cannot publish all results here. Nevertheless, we elaborate on our
general findings. The complete raw results are available on the project’s website3.

The participants rated the different notations due to accessibility, easy com-
prehensibility and technical feasibility in case of the two computer science re-
searchers. Participants chose the best notation for each element and its different
aspects of the class diagram from their point of view. In total, PlantUML is
chosen for 21 out of 29 aspects, Umple for eight aspects, Earl Grey for three
aspects and yUML never. Choosing means that at least one participant rated
the notation best. PlantUML is chosen in more than 50% of all aspects and thus
seems to be preferred. In 13 ratings, all participants chose the same realization
concept of an aspect, even if they chose different notations. For example, all par-
ticipants decided using a separate section (see Table 1) for relations, although
three chose PlantUML, one Earl Grey and two chose the concept rather than a
concrete notation. Table 2 visualizes the relation location representation in the
surveyed notations by a simple directional relation from class ”Teacher” with an
attribute ”subject:String” to class ”Pupil”. PlantUML, yUML and Earl Grey
use a separate association section, whereas Umple represents associations like
attributes. The ratings indicate that the participants preferred graphical imita-
tions for relations instead of verbose textual descriptions like used in Earl Grey.
Pure graphical representations such as yUML are uncomfortable.

In cases of disjoint opinions, further research and discussions will be done
to gain more insights. The results, however, show that participants prefer a mix
of graphical imitations and textual descriptions, separated blocks for defining
elements like classes and prefer compact notations rather than verbose ones al-
though this reduces intuitive understanding of an element. The complete results
are summarized within our derived guidelines in the next section.

Table 2. Excerpt from simple class diagram modeled in four different textual notations

PlantUML

class Teacher{
subject: String

}
Teacher -> Pupil

Umple

class Teacher{
String subject;
1 -> 1 Pupil;

}

Earl Grey

class Teacher
subject: String

end
association

Teacher[1]
Pupil[1]

end

yUML

[Teacher|subject: String]
[Teacher]->[Pupil]



6 Guidelines for Accessible Textual UML Modeling Notations

5 Design Guidelines for Accessible Textual UML
Notations

We derive our design guidelines from the results of the expert interviews and
the analysis of existing guidelines for accessibility and language design in gen-
eral. Our guidelines cover accessibility and usability conditions but also technical
feasibility to provide an easy integration within development frameworks. The
literally fundamentals of the guidelines are taken from Groenninger et al. [2],
Mazanec and Mace [6], Patil et al.[9] and Paige et al. [10]. We extend or fil-
ter these guidelines based on the results of our expert interview. We reviewed
existing guidelines and our final guidelines from three different viewpoints to
develop a notation most suitable for diversity teams. We primarily focus on the
view of software developers with visual impairments, secondly the view of people
working in a diversity team and last from technical feasibility.

The resulting guidelines shown in Figure 2 include five top-level categories
with several concrete realizations: (1) Usability of Textual Notation, (2) Acces-
sibility Support for Visually Impaired, (3) Notation Realization, (4) Concrete
Syntax and (5) Functional Interaction between Notation and Tools.

Usability of Textual Notations Usability plays an important role to allow
all participants working efficiently. Thus, the notation should be simple, easy to
learn and intuitively comprehensible. Notations fulfilling these criteria guarantee
team members working with two different representations (visual vs. textual) a
smooth communication and efficient working. Furthermore, if the concepts are
consistently designed, learning is facilitated.

Accessibility Support for Visually Impaired The notation is mainly de-
signed to improve access to UML for visually impaired people and thus we focus
on accessibility features. The reading techniques of persons with visual impair-
ment differ significantly from those of sighted persons. They cannot skim texts
to pick certain information. Thus, it is important to provide mechanisms which
compensate skimming to allow a fast overview and easy search in a textual no-
tation. The identified compensation mechanisms proved to be beneficial in many
consulting sessions with visually impaired persons.

Notation Realization This category focuses on general notation conditions.
Mimicking some graphical shapes with ASCII code is compact and intuitively
understandable by sighted users, e.g. PlantUML uses (*) for the starting point in
activity diagrams. Although compactness is preferred by blind persons, they have
to learn these arbitrary letter sequences by heart as visual mnemonics are not
available. In contrast to the finding in our study, we follow the objections of our
blind participants regarding visual mnemonics. We choose textual realizations
such as abbreviations based on natural language as they are compact and more
easily to learn and to remember. It is also helpful to reuse meaningful text
elements used in other notations.



Guidelines for Accessible Textual UML Modeling Notations 7

Concrete Syntax The concrete syntax defines the concrete representation of
the modeled elements by graphics, texts, or other ways. Browsing code can be
very cumbersome. Thus, it helps using a) brackets to show element belongings
and ease searching for certain elements b) the same styles for each abstraction
level c) programming syntax for programming paradigms. Furthermore, ambi-
guity of expressions should not be allowed.

Functional Interaction between Notation and Tools Textual notations
for software development are designed to be used in digital form especially when
visually impaired persons are involved. A tool should support both sighted and
visually impaired persons in editing. Code completion can be used by both groups
whereas syntax highlighting can be used by sighted users only. Tools should
provide similar support for both groups. Moreover, it is necessary that notations
are usable across different platforms and support version control mechanisms.

1. Usability of Language
(a) Keep the language simple and consistent
(b) Create an intuitive language
(c) Easy to learn
(d) Ensure consistency of concepts

2. Accessibility Support for Visually Impaired
(a) Constrain certain general structure
(b) Use title for main structures
(c) Enable transcribing mechanisms (Braille, Voice, Text)

3. Language Realization
(a) Minimize graphical realizations
(b) Use textual realizations based on natural language
(c) Use descriptive notations, based on common known keywords
(d) Adopt existing notations if appropriate

4. Concrete Syntax
(a) Use special characters to provide organizational structures
(b) Allow the same style for every abstraction level
(c) Use programming syntax for programming paradigms
(d) Use unambiguous expressions

5. Functional Interaction between Notation and Tools
(a) Provide platform independence
(b) Support writing by certain mechanisms for sighted and visual impaired persons
(c) Provide version control mechanisms

Fig. 2. Overview of all guidelines

6 Conclusion and Future Work

Textual notations make UML modeling accessible. However, comprehensive guide-
lines for designing and rating such notations do not exist. We bridge this gap
by drafting an interview sheet for assessing the accessibility of textual notations
for UML class diagrams. We conduct an expert interview with six participants
and rate four representative textual notations covering 29 realization aspects.
Our participants often chose the same realization concepts independently of a
potential visual impairment or working domain.



8 Guidelines for Accessible Textual UML Modeling Notations

Textual notation designers can use our interview sheet to survey the acces-
sibility of their notation. Additionally, they can construct new sheets for other
diagram types by applying our method described in section 3.

Based on the results of our survey and existing guidelines for designing tex-
tual notations, we derive our design guidelines for the notation developed in the
Cooperate project. The guidelines are organized in five main categories and cover
aspects for accessibility, usability and implementation feasibility. The guidelines
give 18 concrete instructions in total for designing a textual UML notation.

Our next step is to evaluate the effect of editing support such as code comple-
tion on accessibility and whether editing support can compensate insufficiencies
of textual notations. We will also evaluate how notations constructed according
to our guidelines fit the requirements of screen readers and Braille displays and
how they enhance working processes for UML diagrams.

Acknowledgements

This work has been funded by the German Federal Ministry of Labour and Social
Affairs under grant 01KM141108.

References

1. Doherty, B., Cheng, B.H.C.: UML Modeling for Visually-Impaired Persons. In:
HuFaMo’15. pp. 4–10 (2015)

2. Grönninger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Textbased Mod-
eling. In: ATEM’07 (2007)

3. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Völkel, S.: Design
Guidelines for Domain Specific Languages. In: DSM’09 (2014)

4. Loitsch, C., Weber, G.: Viable Haptic UML for Blind People. In: ICCHP’12. pp.
509–516 (2012)

5. Luque, L., de Oliveira Brandão, L., Tori, R., Brandão, A.A.F.: On the Inclusion
of Blind People in UML e-Learning Activities. RBIE’15 23(02), 18 (2015)

6. Mazanec, M., Macek, O.: On General-purpose Textual Modeling Languages. In:
DATESO’12. pp. 1–12 (2012)

7. Müller, K.: How to Make Unified Modeling Language Diagrams Accessible for
Blind Students. In: ICCHP’12. pp. 186–190 (2012)

8. OMG: Unified Modeling Language (UML) – Version 2.5. http://www.omg.org/

spec/UML/2.5/PDF (March 2015)
9. Patil, B., Maetzel, K., Neuhold, E.J.: Universal usability issues of textual informa-

tion structures, commands, and languages of native visually challenged users: An
inclusive design framework. In: ICCHP’02. pp. 403–405. Springer (2002)

10. R.F Paige and J.S Ostroff and P.J Brooke: Principles for modeling language design.
Information and Software Technology 42(10), 665 – 675 (2000)

11. Seifermann, S., Groenda, H.: Survey on Textual Notations for the Unified Modeling
Language. In: MODELSWARD’16. pp. 20–31. SciTePress (2016)

12. W3C: Accessibility Principles - How People with Disabilities Use the Web. https:
//www.w3.org/WAI/intro/people-use-web/principles (August 2012), accessed
01/28/2016

http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF
https://www.w3.org/WAI/intro/people-use-web/principles
https://www.w3.org/WAI/intro/people-use-web/principles

	Guidelines for Accessible Textual UML Modeling Notations
	Introduction
	Related Work
	Methodology for Deriving Accessible Notation Concepts
	Results of Our Accessibility Survey
	Design Guidelines for Accessible Textual UML Notations
	Conclusion and Future Work


